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Coherent states for the harmonic series irreducible 
representations of U( p ,  (I): I. Unitary operator coherent states 

C Quesnet 
Physique Thiorique et Mathtmatique C P  229, Universite Libre de Bruxelles, Bd du 
Triomphe, B-1050 Brussels, Belgium 

Received 8 April 1986 

Abstract. Unitary operator coherent states, as defined by Klauder, Perelomov and Gilmore, 
are considered for the harmonic series irreducible representations of U( p, 4). Various 
properties of these states are reviewed, including their reproducing kernel and measure 
explicit forms, as well as the representation they lead to for the U(  p. q )  generators. Starting 
from a contraction of the su(  p, q )  Lie algebra, both Dyson and Holstein-Primakoff boson 
realisations of U( p, q )  are obtained in terms of pq pairs of boson creation, annihilation 
operators and of the generators of a U ( p )  x U(q) intrinsic group. Such boson realisations 
are applied to determine the matrix elements of the U( p, q )  generators between discrete 
bases classified according to the chain U( p. q )  3 U(  p)  x U(q).  Finally, the isomorphism 
between so(4,2) and su(2,2) is employed to derive the corresponding properties of the 
S 0 ( 4 , 2 )  unitary operator coherent states for application in atomic physics. 

1. Introduction 

It is well known that the harmonic oscillator coherent states (cs)  (Schrodinger 1926), 
also referred to in the literature as Glauber’s standard cs (Glauber 1963) or the cs 
associated with the Heisenberg-Weyl group N( l ) ,  can be defined in several equivalent 
ways (for a recent review on the standard cs and their extensions see Gilmore and 
Feng (1983)). In particular, they are both unitary operator and annihilation operator 
cs, since they can be obtained either by applying a unitary transformation to the 
harmonic oscillator ground state or as the eigenstates of the harmonic oscillator 
annihilation operator corresponding to a complex eigenvalue. 

In extending the notion of cs to other physical systems, the various cs definitions 
lose their equivalency, thereby giving rise to different sets of generalised cs. Both 
definitions of the standard cs as unitary operator or annihilation operator cs admit 
of group theoretical extensions, wherein the cs are associated with a dynamical Lie 
group of the considered physical system. Such generalisations were proposed by 
Klauder (1963, 1964), Perelomov (1972, 1977) and Gilmore (1972, 1974a), and by 
Barut and Girardello (1971). The former is valid for any Lie group, either compact 
or non-compact, whereas the latter can only be applied to non-compact groups. 

Apart from SO(2,l)  and its locally isomorphic groups SU(1, l ) ,  Sl(2, R )  and 
Sp(2, R ) ,  as considered in the earliest works (Barut and Girardello 1971, Perelomov 

t M a k e  de recherches FNRS. 

0305-4470/87/040785 + 23$02.50 @ 1987 IOP Publishing Ltd 785 



786 C Quesne 

1972, 1977, Gilmore 1974a), most detailed results were obtained for compact groups 
(Dobaczewski 1981, 1982 and refertnces quoted therein, Hecht and Elliott 1985, Hecht 
1985). Only recently, generalised cs were constructed for a class of discrete series 
irreducible representations (irreps) of Sp(2d, R ) ,  namely the harmonic series irreps, 
frequently encountered in physical applications. They include both unitary operator 
cs (Kramer 1982, Deenen and Quesne 1984a, Rowe 1984, Kramer and Papadopolos 
1986, Kramer et a1 1986, Quesne 1986a), and annihilation operator ones (Deenen and 
Quesne 1984a, Quesne 1986b), as well as a further generalisation of cs, using both 
continuous and discrete labels and termed either partially cs (Deenen and Quesne 
1984b) or vector cs (Rowe et al 1985). In addition, the relations between cs representa- 
tions and boson realisations of the sp(24 R )  algebra have been extensively studied 
(Mlodinow and Papanicolaou 1981, Deenen and Quesne 1982, 1983, 1984a, b, 1985, 
Rowe 1984, Castafios er a1 1985a, b). 

The aim of the present series of two papers is to present detailed results for the cs 
of the pseudo-unitary groups U( p,  q ) ,  corresponding to the harmonic series irreps 
(Kashiwara and Vergne 1978, King and Wybourne 1985, Quesne 1986~) .  The latter 
can be labelled by [ k ;  k ’ ] ,  where [ k ]  = [ k ,  . . . k,]  and [ k ’ ]  = [ k :  . . . kb]  are two partitions 
and they play an important role both in applications of group theory to atomic physics 
(Quesne 1986c) and in SU( n) representation theory (Deenen and Quesne 1986, Quesne 
1987). In the latter case, their relevance follows from the complementarity relationship 
between U(n) and U(p, q )  for mixed U(n) irreps (Kashiwara and Vergne 1978, King 
and Wybourne 1985, Quesne 1986c, d), while in the former it results from the isomorph- 
ism of the Lie algebras s0(4,2) and su(2,2) and the property that S0(4,2)  is a dynamical 
group for the hydrogen atom (Barut and Kleinert 1967) and for two-electron atoms 
(Wulfman and Kumei 1973, Wulfman 1973). The present series of papers will, in 
particular, attempt to provide solutions to the long-standing problem of finding the 
counterpart for the hydrogen atom of the harmonic oscillator cs. Such solutions 
based upon S0(4,2)  differ from other available ones (Nieto 1980, Gerry 1986 and 
references quoted therein). Note, however, that Mostowski (1977) has already 
published some partial results on the same type of cs as those considered in the 
present paper. 

While paper I1 will be devoted to the annihilation operator cs, the present paper 
deals with the unitary operator cs. In § 2, the U(p, q )  harmonic series [ k ;  k’] are 
reviewed. In § 3, the unitary operator cs are defined and their properties listed in the 
case where k ,  = . . . = k, = k and k‘, = . . . = kb = k’. In 9 4, these results are extended to 
the irreps for which k ,  , . . . , k, and kl , . . . , kb are not all equal, with special emphasis 
on the U(2 , l )  and U(2,2) cases. In § 5 ,  a contraction of su(p, q )  leading to a boson 
algebra is considered. In § 6, both Dyson (1956) and Holstein and Primakoff (1940) 
boson realisations of u(p, q )  are obtained. In 0 7, they are used to determine 
the matrix elements of the generators between discrete bases. Finally, in 0 8, the 
isomorphism between su(2,2) and so(4,2) is applied to obtain S0(4,2)  unitary 
operator cs .  

2. Harmonic series irreducible representations of U(p, q )  

The U(p, q )  generators can be realised in terms of dn boson creation operators T , ~ ,  
i = 1, . . . , d, s = 1, . . . , n, and their corresponding annihilation operators [,$ = ( T ~ ~ ) ’ ,  as 
follows (Quesne 1986~) :  



Unitary operator coherent states of U (  p ,  q ) :  I 

[Eli if i, j = 1, . . . , p 

if i, j = p + 1, . . . , d 
if i = 1 , .  , . , p and j = p +  1 , .  . . , d 

p,, = 

IDl/ i f i = p + l ,  . . . ,  d a n d j = l ,  . . . ,  p 

where we assume p 2 q, and define d = p + q, and 
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(2.1) 

They satisfy the hermiticity properties 

and the commutation relations 

[pi] pkl  1 = g j k P i /  - g / i p k ,  (2.4) 

where g i , = E , a V  and e i = + l  or -1 according as i = l ,  . . . ,  p or  i = p + l ,  . . . ,  d. For 
future convenience, we shall henceforth denote the d values of index i by a and p + P, 
where a and p go from 1 to p and 1 to 9 respectively. With this convention, the 
operators of (2.1) become E,, . ,  Ep+P,p+P.r DL,p+p and 

From (2.3) and (2.4), the operators E,,, and Ep+p,p+p8 generate the maximal compact 
subgroup U(  p) x U( q )  of U( p ,  q ) .  The set of generators (2.1) can be divided into three 
subsets of raising, weight and lowering type as follows: 

Dk,,,+p > E d ( .  < 0’1, E p i p . p + p , (  P < P ‘ ) ;  

Du,p+p, Eu04a ’ a’ ) ,  E , , ? p , , + p , ( P  ’ P ’ )  

E,,, E p + p . p + p ;  

(2.5) 

where the subsets are separated by semicolons. 
In  the realisation (2.1) and (2.2), U ( p ,  q )  has only positive discrete series irreps, 

the so-called harmonic series ones, characterised by their lowest weight { k,, + 
i n , .  . . , k ,  + i n ;  k b + t n , .  . . , k :  + i n } ,  that we denote in short by [ k ;  k ’ ]  (Quesne 1 9 8 6 ~ ) .  
Here [ k ]  = [ k ,  . . . k,,] and [ k ’ ]  = [ k ;  . . . kb]  are two partitions. The irreps for which 
k , ,  . . . , k,, k j ,  . . . , kb d o  not vanish can be realised only provided that n 2 d. In the 
remaining cases, the following conditions have to be fulfilled: 

kn-q+u+l  = .  . . = k, = k b - , , ,  = .  . . = kb = 0 for some u E {0 ,1 , .  . . , d - n} 

if p s n < d  

for some U E {0,1,. . . , q }  

if q S n < p  (2.6) 

for some CT E (0, 1, . . . , n }  

if n < q. 

k n - q + u + l  = .  . . = kp = k b - , , ,  = .  . . = kb = 0 

k,,, =. . . = k,, = kk-u+ ,  = ,  . , = kb = O  
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The lowest-weight state (LWS) of an irrep [ k ;  k ' ]  satisfies the following equations: 

D,.p+p I LWS) = 0 

E,,.lLWS) = Ep+P,p+P'JLws) = 0 

E,,)Lws) = ( k p + l - a  + ~ / ~ ) I L w s )  
Ep+p,p+plLws) = ( k b + l - p +  nI2)ILWS) 

ff > f f l ,  p >  p'  
(2.7) 

and is also the LWS of a U( p )  x U(q) irrep characterised by [ k ]  x [ k ' ] .  A solution of 
(2.7) is given by (Quesne 1986c, 1987) 

where k p + ,  = kL+l = 0 and v,, l ~ , s ,  i, denotes the determinant of order r formed from 
the rows i, , . . . , i, and the columns si,. . . , s, of the d x n matrix / /  v,, / I .  

From the LWS (2.8), bases of the U(p)  x U(q)  irrep [ k ]  x [ k ' ]  are generated by 
applying polynomials in E,, and Ep+P,p+P . The resulting states l ( k ) ,  ( k ' ) )  can be 
characterised by U( p )  and U(q) Gel'fand patterns, denoted by ( k )  and ( k ' ) ,  respec- 
tively. The remaining bases of the representation space 9 1 k . k  of [ k ;  k ' ]  are obtained 
by applying polynomials in D:,p+B to the states [ ( k ) ,  ( k ' ) ) .  Such polynomials 
P [ h s l ( h s , ( h ~ , ( D ~ , p + P )  can be specified by a U ( p ) x U ( q )  irrep [ h s O ] x [ h ' ]  and by the 
corresponding Gel'fand patterns ( h " )  and ( h s  ). Here the U( p )  and U(q) irreps are 
characterised by the same partition into q integers h i , .  . . , and a dot over a numeral 
means that this numeral is repeated as often as necessary. Bases of 9 C k . k  ], classified 
according to the chain U(p, q )  1 U ( p )  x U(q) ,  are therefore given by (Quesne 1987) 

where ( , I ) denotes an SU(p) or SU(q)  Wigner coefficient, ,y and x' are multiplicity 
labels, w is shorthand for [h'],y,y' and E, is some normalisation coefficient whose 
dependence on [ k ] ,  [ k ' ] ,  [ h ] ,  [ h ' ]  has not been indicated. With the choice made for 
E, in § 5, the states (2.9) are not normalised to unity, nor are they orthogonal with 
respect to [ h ' ] ,  which cannot be associated directly with eigenvalues of Hermitian 
operators. 

The SU(p, q )  subgroup of U(p, q )  is generated by the operators 

~ u = P , , - ~ l / d ) g ~ , G ~  i, j = 1 ,  . . . , d 

where 

(2.10) 

(2.11) 
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is the first-order Casimir operator of U( p ,  4). An alternative choice for the SU(p, q )  
generators consists of DL,p+p, Da,p+P and the operators 

E,, = E,,.-(l/p) S, ,J  E,,.," 

-q?+P. , ,+p.= E p + P . p + P  - ( l / q )  b 3 , C  Ep+p- ,p+p, ,  

," 

(2.12) 
0" 

generating the maximal compact subgroup SU( p )  x SU(q) x U( 1) of SU( p ,  q ) .  Under 
restriction of U(  p ,  q )  to SU( p ,  q ) ,  the irreps [ k ;  k ' ]  remain irreducible and satisfy the 
equivalence relation 

[ k , + ~ ,  . . . , k P + c ;  k l - c , .  . . , k b - ~ ] - [ k I . .  . k,,; k l . .  . kb]  (2.13) 

for c any integer subject to the conditions k,  + c 3 0 and kb - c 3 0. 
Having reviewed the U( p ,  q )  harmonic series irreps [ k ;  k ' ]  and their discrete bases, 

we can now proceed to define and study the corresponding unitary operator CS. In  
5 3, we shall carry on this programme for a special type of U(p, q )  irreps, leaving the 
discussion of the general case until 5 4. 

3. Coherent states for the irreducible representations [ i ;  i'l 

Let us consider the class of U(  p ,  q )  irreps for which k, = . . . = k,, = k and k', = . . . = kb = 
k'and denote them by [k; k']. They are the analogue ofthe Sp(2d, R )  irreps ( ( A  
whose unitary operator cs  were studied by Kramer (1982) and Deenen and Quesne 
(1984a). The LWS of a [ k; k'] irrep belongs to a one-dimensional irrep of U( p )  x U(q), 
and from (2.8) it becomes 

(3.1) 

Following Klauder (1963,1964), Perelomov (1972,1977) and Gilmore (l972,1974a), 
the system of unitary operator cs corresponding to [ k; k ' ]  and the reference state I L W S )  
is obtained by applying to the latter the unitary operator representing an element g of 
U(p, q )  in FLk.k and by letting g run over the whole group. Since the U(p, q )  
generators, with the exception of Da.p+P, have a trivial effect on (3.1), giving either 
zero or the same state multiplied by a constant, the U(p, q )  cs can be written as 

k x ( v ~  p , ~  p )  ( v p + l  d , n - q + l  

lu) = exp( aP c u*PD:., ,+P)lLWS) (3.2) 

where * denotes complex conjugation and the summation runs over a and p from 1 
to p and 1 to q, respectively. The parameters uaP specify the points of the coset space 
U(  p ,  q ) / [  U( p )  x U(q)], where U( p)  x U( q )  is the stability group of the reference state 
(3.1). Hence they form a complex p x q matrix U, subject to the condition that I - uu' 
(or equivalently I - u T u )  be a positive-definite (Hermitian) matrix (Hua 1963, Gilmore 
1974b). 
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The cs lu) form a non-orthogonal family of states, their overlap being given by 
i ( u ' ;  ~ * ) = ( ~ ' l ~ ) = ( d e t  U ) - k - k ' - "  =(det  V)-k-k ' -n  (3.3) 

where 

U = I - u t u t  v = I - U + d .  

The proof of (3.3) goes in three steps. First, the relation 
(3.4) 

and - denotes transposition, is established by using a matrix representation of the 
complex extension G1( p + q, C) of U( p ,  q )  (Gilmore 1974c, Deenen and Quesne 1984b). 
Second, the property 

= ~ t k l ( C - l ) g t k ' l (  V - 1 )  (3.7) 
is taken into account. In (3.7), and 9[k'1 are (one-dimensional) representation 
matrices of Gl(p, C)  and Gl(q, C), respectively. Finally, a theorem of Brunet and 
Seligman (1975) for the representation matrices of G1( n, C)  is applied, leading to (3.3). 

Provided that k and k' fulfil the condition k + k'+  n > d, the cs satisfy a unity 
resolution relation: I d&(u)lu)(ul = I[k,kpl (3.8) 

with the representation space 9 I k . k  ]. In (3.8), the integration is carried out over the 
origin-centred unit ball and the measure dc?(u) is given by 

dc?(u) = ? ( U ,  U*) du du* (3.9) 
where 

? ( U ,  U * )  = A  (det U ) k + k ' + n - d  
U is obtained from (3.4) by setting U '  = U and 

(3.10) 

a = 7 ~ - ~ ~  fi [(  k + k ' +  n - q + /3 - I ) ! / (  k + k ' +  n - d + /3 - 1) !]. (3.1 1) 

The proof of (3.8)-(3.10) consists in showing that the operator on the left-hand side 
of (3.8) commutes with all the U(  p ,  q )  generators, thence by Schur's lemma is a multiple 
of Z [ ~ : G ~ ~ .  The correct normalisation (3.11) is ensured by imposing that the expectation 
value of the operator in the state (3.1) be equal to 1. The required integral has been 
calculated by Hua (1963). 

p = 1  
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Whenever the condition k +  k’+ n > d is fulfilled, the cs [ U )  form an overcomplete 
set of states with a reproducing kernel given in (3.3). Such a set can be used as a 
continuous basis in .F[k;ksl. Any vector 14) in 54[k,k91 is then represented by an analytic 
function in the variables U,,: 

$ ( U )  = ( U  14) (3.12) 

and any operator X acting in 9 , i ; k s 1  by a partial differential operator & with respect 
to U :  

(3.13) 

In particular, the U( p ,  q )  generators are represented by the first-order partial 

(U lX l+ )  = &U I +). 

differential operators 

2 , , .= [U. i r+(k+qn)r ] , , ,  

(3.14) 

%?.p+p = vu, 

where Z is the p x p  or q x q unit matrix as the case may be and V is the p x q matrix 
whose elements are 

Q,, = a/aU,,, (3.15) 

It is straightforward to check that the operators (3.14) satisfy the U(p, q )  commutation 
relations (2.4), as well as the hermiticity conditions (2.3) with respect to the measure 
defined in (3.9) and (3.10). 

In the next section, we shall extend the definition and properties of the cs introduced 
in the present section to arbitrary irreps [ k ;  k’]. 

4. Coherent states for the irreducible representations [ k ;  k ’ ]  

Whenever k , ,  . . . , k,  or k ; ,  . , . , kb are not all equal, the stability group of the LWS 

(2.8) is a proper subgroup H = H(p) x H ( q )  of the maximal compact subgroup U(p)  x 
U(q).  The unitary operator cs corresponding to such an irrep and a reference state 
exist in one-to-one correspondence with the points of the coset space U(p, q ) / H  
(Kiauder 1963, 1964, Perelomov 1972, 1977, Gilmore 1972, 1974a). In analogy with 
the cs for the Sp(2d, R )  positive discrete series irreps (Rowe 1984, Kramer and 
Papadopolos 1986, Quesne 1986a), i t  is advantageous to adopt a parametrisation of 
the coset space corresponding to the factorisation 

U(P, q ) / H  = W ( P ,  q) / [U(p)xU(q)I } { [U(p)xU(q) l /H}  (4.1) 

[U(P)  x U ( q ) l / H  = [U(p)/H(p)l[U(q)/H( q)1. 

where 

(4.2) 
Accordingly, the unitary operator cs for the irreps [ k ;  k ’ ]  are defined by 

IU,  y ,  1;) = exp( 4 c UtP~~. , , ,>~y9 z )  (4.3) 
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where U is the same matrix as in $ 3 and y ( E )  denotes a set of parameters specifying 
the points of the coset space U( p ) / H (  p )  [ U ( q ) / H ( q ) ] .  In other words, the states ly, E )  
are U( p )  x U(q) cs corresponding to the irrep [ k ]  x [ k ' ]  and the reference state (2.8). 
Hence, they can be written as 

Iy, 2) = [ M ( Y ) N ( Z ) I T I L W S )  (4.4) 

where the commuting operators M ( y )  and N ( z )  depend on E,,, and E p + p . p + P ' ,  
respectively. 

The overlap of the states (4.3) can be determined in the same way as that of the 
states (3.2). From (3.5) and from a relation similar to (3.7), one finds 

k ( u t , y r ,  2 ' ;  u* ,y* ,  z * )  = (u ' , y ' ,  z'I u,y ,  z) 

= 9:2i")(min)( Y' fi-' Y+)9\;ln,cmin,( 2' V - ' Z + ) .  (4.5) 

Here 9'k1 and B r k "  are the K -  and K'-dimensional representation matrices of Gl(p, C) 
and Gl(q, C) corresponding to the irreps [ k ]  and [ k ' ] ,  respectively, (min) denotes the 
lowest-weight Gel'fand patterns of these irreps, Y and 2 are the realisations of M ( y )  
and N ( z )  by p x p and q x q matrices, respectively, and Y',  Z' only differ from Y, 2 
by the substitution of y ' ,  z'  for y ,  z. 

For most irreps [ k ;  k ' ] ,  the cs Iu,y, z) satisfy a unity resolution relation within the 
representation space s [ k ; k ' ] :  

d6(u, y ,  Z)i', Y? z ) ( u ,  y ,  zI = I [ k , k ' ]  (4.6) 5 
with some measure 

d 6 (  U, y ,  z) =f( U, U*, y ,  y * ,  z, z* )  du du* dy dy* dz dz*. (4.7) 

The representation of the U( p ,  q )  generators by first-order partial differential 
operators is now 

1 

% p + P  = v,, 
where @,",'. and sb",', denote the partial differential operators representing E,,. and 
Ep+P,p+P' in the U ( p )  and U ( q )  cs representations corresponding to the irreps [ k ]  and 
[ k ' ] ,  respectively. 

In appendix 1, explicit expressions of the reproducing kernel, the weight function 
and the generator representation are given for the U(2,  1) and U(2,2) cs. 

This concludes our review of the U(p, q )  cs properties. In the remaining part of 
this paper, we shall apply them to establish some related properties. 

5. Contraction of su(p, q )  

For groups other than U(p, q )  (Dobaczewski 1981,1982, Deenen and Quesne 1984a, b, 
1985, Rowe 1984, Hecht and Elliott 1985, Hecht 1985), it has been shown that the 
unitary operator cs representation of the corresponding Lie algebra is intimately 
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connected with a Dyson boson realisation of the latter (Dyson 1956), from which a 
Holstein-Primakoff boson realisation can then be derived (Holstein and Primakoff 
1940). In addition, for the Sp(2d, R )  positive discrete series irreps, it has been proved 
that a boson algebra arises in a straightforward way when contracting the Lie algebra 
s p ( 2 4  R )  in the limit n + CC, and that such a boson limit is but the leading term in a 
expansion of the Holstein-Primakoff realisation of sp(2d, R )  into powers of l l n  
(Rosensteel and Rowe 1981, Rowe and Rosensteel 1982, Deenen and  Quesne 1982, 
Rowe 1984, Castarios and  Frank 1985). The purpose of the present section and of the 
following one is to extend these two properties to U(p, 9). In this section, we shall 
review the contraction of the su(p,  q )  algebra in the large n limit. 

Let us define the contracted operators as follows: 

a:, = n - f  Iim (Dh,,+,/dn) Qup = / ~~ (D , ,p+ , l dn l  
- - - - 

A,,.= lim E,,. Bpp,= lim Ep+p.p+p 
n - X  n - - x  

(5.1) 

I = l im(dE/2npq).  
n+3c 

By using (2.1), (2.4) and (2.12), we obtain the commutators 

[a,,, a:. , .]  = a,,. 6,,,1 ( 5 . 2 ~ )  
- - - - 

[A,,, ,  A,,,,.,] = 6;,,,A,,’, - 6,,, , ,A,,*,’ 
- - - - 

[Bo, , ,  B,.,,..] = S,,,.,B,p,,, - Sp,,..Bo-,. 

[B,’, . ’ ,  a:p3 = S,..,a:,,.- 4 - l  S,,,,,a;, 

[B, . , . . ,  a,,] = -6,.,a,,,,+ 4-I 6,’p..a,,p 

(5.2b) 

[A,,,,., a:,]  = 6,..,a:., - p - l  6,.,..a:, 

[A,.,,,, a,,] = -6,,,a,,., + p - ’  6,,,,,a,, 

( 5 . 2 ~ )  

(5.2d) 

all the remaining ones vanishing. Hence the p q  pairs of operators ahp, a,,, a = 
1 , .  . . , p ,  p = 1,:. . , 9, are boson creation and annihilation operators, I is the unit 
operator and A,,, ,  a,  a ’=  1,. . . , p ,  B,,,, p, p ’ =  1 , .  . . , 9, respectively, generate su (p )  
and su(q)  algebras, with respect to which the U:, behave as vector operators. We 
conclude that in the large n limit, su(  p ,  q )  contracts to the semi-direct sum of su(  p ) O  
su(q)  and  a Heisenberg-Weyl algebra in p q  dimensions. 

From (2.7) and (2.9), the carrier space @ [ k ; k ’ ]  of an irrep [ k ;  k’ ]  contracts to the 
direct product space 93 x 9, where 3 is the p q  boson Fock space built from the 
operators abp acting on a vacuum state IO] and  Y is the KK’-dimensional carrier space 
of the unique irrep [ k ]  x [ k ’ ]  of a U ( p )  x U ( q )  intrinsic group. The latter is generated 
by some operators A,,, , ,  a, a’= 1 , .  . . , p and B,,,, p, p ‘ =  1 , .  . . , q, satisfying the usual 
U ( p )  and U(q)  commutation relations (5.26) and commuting with one another as well 
as with the boson operators. 

Let us denote the bases of the intrinsic space Y by I ( k ) ,  ( k ’ ) ] ,  specified by U ( p )  
and U ( q )  Gel’fand patterns ( k )  and ( k ’ ) .  Provided they are multiplied by n-iZph;, the 
bases (2.9) of @ [ k ; k ’ ]  contract to the bases of 3 x Y: 

- 

(5.3) 
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for which we use a square bracket instead of an angular one. Here P ~ h ~ l ( h ~ ) ( h ~ ~ ) ( a ~ p )  
is obtained from P ~ h ' l ( h ' ) ( h ~ , ) ( D L , p + P )  by substituting aLp for DL.p+p and B, is defined 
in such a way that the states (5.3) are normalised to unity. 

When su(p, q )  is restricted to % [ k ; k ' ] ,  the contracted operators A,,. and Bpp. can 
be built from the boson operators a L p ,  aUp and the U( p )  x U(q) intrinsic group 
generators A,,,, Bpp., as follows: 

A, ,~=A, , , -p- '  Sa,.C A , ~ ~ , ~ ~  B p p , =  B p p s - q - '  8 p p . C  Bpf,p*, (5.4) 
a " P" 

where 

A, , ,= [a 'a '+ i ] , , ,  Bpp. = [ $ a  + B I p p , .  ( 5 . 5 )  

It is straightforward to check that the operators (5.4) and (5.5) satisfy (5.2b, c, d )  as 
it should be. 

6. Boson realisations of u(p, q )  

Let us now come back to finite n values and consider the one-to-one mapping: 

g [ k , k ' ] - )  a 9: I w [ h l [ h ' l ( h ) ( h ' ) ) H l w [ h l [ h ' l ( h ) ( h ' ) l .  (6.1) 

Such a mapping does not preserve the scalar product: contrary to (2.9), the states (5.3) 
are indeed normalised to unity and orthogonal with respect to [ h ' ] ,  which now 
characterises the irreps of the U( p )  and U( q )  groups generated by ( uta'),,, and ( d ' ~ ) ~ ~ ,  , 
respectively. 

In the mapping (6.11, the U(p, g) generators are mapped onto some polynomials 
in the operators a & ,  aap, and Bpp.. As in the Sp(24  R )  case (Deenen and Quesne 
1984a, b, 1985, Rowe 1984), the latter are obtained from the cs representation (4.8) 
by the replacements 

uap + a:p vu, -+ aup 8!&! + Aa,, @;. + &@..  

The result is 

(Q7.p+p)B = aup.  

Since ( D u , p + p ) ~  is not the Hermitian conjugate of ( D b , p + p ) ~  (6.2) provides a Dyson 
boson realisation of u(p, q ) .  This could have been anticipated from the fact that the 
mapping (6.1) does not preserve the hermiticity properties of operators. 

We can restore the hermiticity properties of operators, namely go from their Dyson 
realisation X B  to their Holstein-Primakoff one XHp, by the transformation (Deenen 
and Quesne 1982, 1984a, b, 1985, Rowe 1984) 

(6.3) xHP= T - I / ~ X ~ T I / '  



Unitary operator coherent states of U (  p, 9): I 795 

where T is a positive-definite Hermitian operator. By applying (6.3) to the Dyson 
realisation (6.2) of the generators, we find that the Holstein-Primakoff realisation of 
the latter is given by 

( E,,') H p  = [ a  'a' + i]~,' ( + p. p + p ') H P = [ a' ' a + fi 1 pp 
(6.4) 

( D L , p + @ ) H P =  amp ' T-'I2 ( D a , p + p ) H p =  T-'12a 4 T'I2 

and that T is a U( p )  x U( q) invariant satisfying the matrix relation 

~ a ' ~ - l = ~ a ~ + a ~ ~ + ( a - i - p z ) a '  (6.5) 

Ta'T-' = [A,  a']. (6.6) 

A = i Tr[(at& + (6.7) 

or equivalently 

Here A is the U( p )  x U( q) invariant defined by 

+ (&'a + B ) 2  - ( a ' & ) 2  - qa' i ]  
and whose eigenvalues are given by 

+ 5 [ h b ( h & +  n + q - 2 p  + 1)- h; (h ;+d  - 2 p  + I)]+: dn2 ) . (6.8) 
p = l  

Determining T is equivalent to finding its matrix elements in the basis (5.3): 

Lf ,u( [h l ,  [h' l )  = [w'[hl[h'l(h)(h')I TIw[hl[h'lih!(h')l .  (6.9) 
They are diagonal with respect to [h]  and [h'] and independent of ( h )  and (A'). From 
(6.6), we obtain the relation 

[w[h][h'] / /  Tu' T-'  /I W[i][k']]  
= [A([h'I, [h l ,  [h' l )  - A ( [ P I ,  [El, ~ ~ l ~ l ~ ~ ~ ~ l r ~ ' l l J ~ + I I ~ ~ ~ 1 ~ ~ 1 l  (6.10) 

where [ 11 1) ] denotes a U( p )  x U( q) reduced matrix element. Whenever the U( p )  x 
U ( q )  irreps [h ]x [h ' ]  and [K] x[R] occur with multiplicity one in [ k ;  k ' ]  (hence the 
multiplicity labels w and W are not needed), (6.10) reduces to 

(6.11) t([hl ,  [ h ' l ) / t ( [ i l ,  [ P I )  =A([h'I ,  [ h l ,  Eh']) -A([h'l, [hl, [ P I )  

where 
- 
h, = h, - S,, Lb = hb - Sp, (6.12) 

for some r, s such that l 6 r G p  and l s s s q .  
In particular, for the irreps [ h ;  h'], all the U ( p )  x U(q)  irreps are multiplicity free. 

In such a case, the Holstein-Primakoff realisation of U (  p ,  q) can be written in a closed 
analytic form. Since 

(6.13) 

= ( k +  n/2)Z and fi = ( k ' +  n/2)Z, (6.5) indeed becomes 
7-a'T-l = [ U ' & +  ( k +  k '+  n - p ) f ] a T  

(6.14) 
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In (6.14), the square root operators could be written as finite expansions into powers 
of uta' or ;'a, with coefficients depending upon the invariants Tr(uia')A, A = 
0,1 , .  . . , p - 1, or Tr(itu) ' ,  p = 0, 1, . . . , q - 1 (Deenen and Quesne 1982). 

Whenever [h]  x [h'] is not multiplicity free (hence w is needed), the matrix elements 
of T can be determined from a recursion relation (Rowe 1984, Castaiios et a1 1985a). 
By rewriting (6.6) as 

where 

(6.15) 

(6.16) 

is the boson number operator, and by taking matrix elements of both sides of (6.15), 
we indeed obtain 

x [ U ' [  h][ h ']  I /  I '11 G ' [ h ] [ / ? ] ] [ w [ h ] [ h ' ] I l a ' l l w [ h l [ h i l l  (6.17) 

x t ,  J [ K  [ i l l ) .  

In (6.17), the summatio 1 oder [h] and [/?I runs over those irreps satisfying (6.12) and 
the reduced matrix elemr qt  of a t  in the basis (5.3) is given by 

[ w [hl[  h ' l  II a A / I  6 [$I[ h'l' 
= U([kI,[h 01, [h l ,  [lo]; [hllx, [h'blx) 

x U([k'I, W I ,  [h ' l ,  [lo]; W I Z ' ,  [ ~ ' l X ' ) [ h ' i i ~ - l l ~ ' l  (6.18) 

in terms of SU(p)  and SU(q)  Racah coefficients and the reduced matrix element of 
u A  between boson states characterised by U( p )  x U(q)  irreps [h'O] x [h ' ]  and [h'o] x 
[h'] (Biedenharn and Louck 1968): 

(6.19) 

Once the matrix elements of T have been calculated, those of can be determined 
by diagonalising the matrix of T. Since in general this requires the solution of high 
degree algebraic equations, the Holstein-Primakoff realisation of U( p ,  q )  cannot be 
written in a closed algebraic form (Deenen and Quesne 1985, Castaiios et a1 1985a). 

Finally note that in the limit n + m ,  from (6.5) and the properties i - ( i n ) I ,  
k - ($n)I, we obtain Tu' T- '  - nu', so that T"'a' T-'" - n '"ai . Comparison with 
(5.1) and (6.4) shows that the contracted generators are but the leading term in an 
expansion of their Holstein-Primakoff realisation into powers of I /  n. 

In  the next section, we shall consider some applications of the boson realisations 
obtained in the present section. 

7. Matrix elements of the U(p, q )  generators between discrete bases 

For practical purposes, it is important to know the matrix elements of the U(p, q )  
generators in the basis (2.9) corresponding to the chain U(  p ,  q )  2 U( p )  x U( 4). In  the 
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present section, we shall show that they can be determined from the known matrix 
elements of boson operators by using the mapping (6.1) and the associated boson 
realisations of U( p ,  9 ) .  In  this way, we shall extend to U(  p ,  q )  some results previously 
demonstrated for Sp(2d, R )  (Deenen and Quesne 1984c, 1985, Rowe et a1 1984, Rowe 
1984). 

To begin with, we note (Deenen and Quesne 19851 that the operator T, defined in 
(6.3), is precisely the operator whose matrix elements with respect to the bases (5.3) 
of 93 x Y reproduce the overlaps of the corresponding bases (2.9) of 3[k.lr 

tu ,W ( [h l ,  Ch'l) = (w ' [h l [h ' l (h ) (h ' )  1 w[h l [h ' l (h ) (h ' ) ) .  

A, = BW[t,,,([hl, [h ' l ) l - '  ?. 

(7.1) 

(7.2) 

The states (2.9) will therefore be normalised to unity provided we replace B,,, in their 
definition by 

I f  the boson polynomials P [ h ' ] ( h ' ) ( h  , ( a&)  are normalised in such a way that the 
highest-weight one is 

(7.3) 

where h i + l  = O  and a:? p , l z  is the determinant of order p obtained from the first p 
rows and columns of the matrix at ,  then the normalisation coefficient B, of the states 
(5.3) is given by (Biedenharn and Louck 1968) 

(7.4) 

The determination of T therefore provides both the overlap of the bases (2.9) and the 
normalisation coefficient A, through ( 7 . 1 )  and (7.2), respectively. 

Let us now consider the matrix elements of the U( p ,  q )  generators. Since E,,, and 
Ep+p,p+p. are U( p )  and U ( q )  generators, respectively, their matrix elements are well 
known. Moreover, by using the hermiticity property (2.31, the matrix elements of 
Da,p+p can be deduced from those of D:r.p+P. Hence we are only left with the calculation 
of the latter. Proceeding as in the case of Sp(2d, R )  (Deenen and Quesne 1985), from 
(6.2) and (6.5) we obtain 

( w  [ h  I[h'l I1 D7 t i  W [ m7 1 = [ w [ h  Nh ' l  / I  ( D') D 11 (3 [ i l [  h'll 
= 1 r,,,,([hl, ~ h ' l ~ [ w ' [ h l [ h ' l ~ l a ' ~ ~ W ' [ ~ l [ h ' l l r ~ ' . ~ ~ ~ ~ l ,  [/?I). (7.5 1 

W ' 6 '  

Here t;!,w([i], [h']) denotes a matrix element of T- '  and the states 

lw[h l [h ' l (h ) (h ' ) )  = 1 l w ' [ h l [ h ' l ( h ) ( ~ ' ) ) r ~ ' . u ( [ h l ,  [ h ' l )  (7.6) 

for which we use a round bracket instead of an angular one, are dual bases to (2.9). 
In  addition, from (6.4) we get 

I 

W '  

h 1 [ h '1 i I D ' 11 6 [ i l  r PI } = [ 0 [ h 1 [ h '1 11 ( D ' ) H PI/ (3 [ i l  [ h' 11 
= 1 r :',( [ h I, [ h 'I ) [ w '[ h ][ h '1 I/ a ' / /  w '[ i][ h'] ] t i  !,L2( [ i ] ,  [PI ) (7.7) 

, respec- 

lw[h l [h ' l (h ) (h ' ) }  = l ~ ' [ ~ l [ ~ ' l ( ~ ) ( ~ ' ) ) r ~ ' , ~ ' ( [ ~ l ,  [h ' l )  (7.8) 

W ' 3  

where f L ! t , ( [ h ] ,  [h '])  and tJ/,L'([E], [h']) are matrix elements of T"'and 
tively, and the states 

W '  



798 C Quesne 

for which we use a curly bracket instead of an  angular one, are orthonormal bases in 
FLkik. ] .  Since the reduced matrix element of a', appearing in (7.5) and (7 .7) ,  is given 
by (6.18) and  (6.19), once again the knowledge of T entirely determines that of the 
generator matrix elements. In appendix 2, the above general results are illustrated by 
giving detailed formulae for some special cases. 

8. S0(4,2) coherent states 

In  this concluding section, we shall indicate how the results of the previous ones can 
be applied to the S 0 ( 4 , 2 )  unitary operator cs by using the isomorphism between 
so(4 ,2)  and su(2 ,2) .  

The S 0 ( 4 , 2 )  generators are denoted by 

LAB = -L,9,4 = (LAB)* A, B = 1, . . . , 6  (8.1) 

and  satisfy the following commutation relations: 

LCD] = i ( g A C L 6 D + g A D L C B + g B C L D A + g B D L A C l  (8.2) 

with the metric tensor gAB = diag(1, 1, 1, 1, -1, -1). An alternative notation (Wolf 
1967, Moshinsky and Seligman 1981) is 

L a  = Lbc A, = L4u N ,  = L,s K ,  = Le6 N = Ls6 (8 .3)  

where roman indices take the values 1 , 2 , 3 ,  with (abc )  a cyclic permutation, and greek 
indices take the values 1 , 2 , 3 , 4 .  The maximal compact subgroup SO(4) x S0(2 ) ,  where 
SO(4) - SU(2) x SU(2), is generated by the operators L, ,  A,, a = 1 ,2 ,3 ,  and N which 
for the hydrogen atom are, respectively, the angular momentum and Runge-Lenz 
vectors, and the number operator (whose eigenvalue is the principal quantum number). 
The non-compact generators N ,  and K ,  can be combined into raising and lowering 
ones, defined by 

BL = N ,  -iK, B, = N,  +iK, (8.4) 

respectively. The isomorphism between so(4 ,2)  and su(2,2) is expressed by the 
relations 

and those coming from the hermiticity properties L - = ( L + ) ' ,  A-=(A+) '  and B, = 
( B y .  

The SU(2,2)  irreps, i.e. the U(2, 2) irreps [ k ;  k ' ]  subject to the equivalence relation 
(2.13), are (possibly not one-valued) irreps of S0(4 ,2 ) ,  characterised by vosoto or 
vo(P04oL where 

v g  = i ( k 1  + k2+ k'l + k ; +  2n) so = ;( k ,  - k, )  t 0 -1 - 2 ( k l -  4) 
(8.6) 

Po = so+ t o  40 = so- t o  
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respectively, specify the eigenvalue of N corresponding to the LWS and the SU(2) x 
SU(2) or SO(4) irrep to which it belongs. The discrete bases (2.9) of g-[k.k.l are now 
denoted by I w v s t m )  or Iwv(pq)mm') ,  where v, s, t ,  p ,  q are defined in terms of h , ,  h 2 ,  
h i ,  h i  by relations similar to (8.6), v, T, m = U + T ,  m'= v -  T are the eigenvalues of 
So = :(El, - E z 2 ) ,  To = ; ( E J 3  - E44), Lo and Ao, respectively, and  w is shorthand for 
v,( p c ,  O), where v, = h ;  + h; + n, p1 = h ; - h; .  We can go from such bases to states 
classified according to the chain SO(4) 3 SO(3) 3 SO(2) by the transformation 

I w v ( p q ) l m ) = C ( f ( p + q ) f ( m + " ) ,  f ( P - q ) t ( m  -")lWl4pq)"') (8.7) 

where ( , I ) is an SU(2) Wigner coefficient. 
From the previous sections, the unitary operator cs corresponding to an S 0 ( 4 , 2 )  

irrep vo(poqo) can be written as 

I U', x I  , x2) = exp( U'* B')lxl, x2) (8.8) 

m' 

where 

(8.9) 

and 

IxI, x2) = exp(xTL+ + x f A + ) I ~ w s ) .  (8.10) 

Here the 4-vector U' is defined in terms of the 2 x 2  matrix U of (A1.8) by 
U - - L (  u2 = -fi( u 1  I + uzz) 3 -  2 UI2+U21) 

-1 
1 - Z(U1 I  - Uzz) 

u4 = -ti( u,* - uZ1) 
( 8 . 1 1 )  

and satisfies the conditions U' - U'* < 1 and 1 - 2U' * U'* + (U' * U')( U'* U'*) > 0; in addition, 
x1 and x2 are given in terms of the parameters y and z of (A1.8) by 

(8.12) 

Equation (8.10) is valid whenever -po< qo<po .  It can also be used in the remaining 
cases provided we set x2 = x, , x2 = -x, or x I  = x2 = 0 according as pa = qo > 0, pa = -qo > 
0 orp0=qO=O.  

x2 = 4(y - z). -1 
I - A Y  + z )  

The cs reproducing kernel is 

(U", 4,  xs I U', XI, x2) 
= [ 1 - 2u" . U'* + (U" . i')( U'* . u ' * ) ] - " o - P o ( y ' .  O ) P O + " (  2 .  Q ) P o - 4 0  (8.13) 

where the 4-vectors 9, 2, 0 and 3 are defined by 

Yl = y ' + y *  y z  = -i(y'-y*) y ,  = -1  +y'y* y,= l + y ' y *  
z, = z'+ z*  z2 = -i(z'- z*)  z j  = - 1 + z'z* 24 = 1 + z'z* 

E , ~ ~ u ~ u ~  - ubu2 + a = l , 2 , 3  

U -1-U".U'* 

v ,=- i  &,bcUbUr + UbU4" - U&: a = 1 , 2 , 3  

4- 

( hc 

v4=1-U".U'* 

and is the antisymmetric tensor. 

(8.14) 
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For most irreps, the cs satisfy the unity resolution relation 

d 6  ( G ,  xi ,  x,)IG, X I ,  X A C ,  X I  9 x2I = I , , , . , , , , , )  (8.15) 5 
with the measure 

d6(u', XI, ~ 2 ) = 6 4 ~ - " (  p + 4 + 1)( p - + I ) (  ~ + p  - I ) (  V +  9 -2)( v - q - 2 ) (  v - p  - 3 )  

x [1-2u ' .  U ' * + ( ; .  U ' ) ( ; *  * u'*)]"(Y'* oy(5 
x du' du'* dx,  dx? dx, dx; (8.16) 

where 9, 2, 0, 3 are defined by (8.14) where we set U" = U', xi = x I ,  x i  = x2 and 

a = 6  K = U o + p o - 2  A = -( Po + qo + 2 )  p = - ( p 0 - 4 0 + 2 )  

a = 5  K = V o + p o - 3  A = -(PO+ qo+ 2) p=O 

a = 5  K = V , $ - p o - 3  A = O  p = -(po-40+2)  

a = 4  K = Vu-4 A = O  p = o  

if -Po < q o  < Po 

if p o = q O > O  (8.17) 

if Po= -qo>o 

if po = q o  = 0. 

The existence of the unity resolution relation (8.15) is subject to the condition K > 0. 
The latter is not satisfied for the S0(4 ,2)  irrep containing the bound states of the 
hydrogen atom, for which n = vo = 1 and po  = qo = 0. Hence, in this case the CS 12) do 
not form a continuous basis and great caution must be exercised while using them. 

For those irreps for which (8.15) is satisfied, the cs representation of the S0(4 ,2)  
generators is given by 

1 

&a = -i 1 & , h c U h V c  + 9, d, = i( U, V, - u4va + 2, 
hc 

(8.18) 

0 0  

where G, = a/&, and Ta = Tbc, d, = Yda denote the partial differential operators 
representing La and A, in the SO(4) cs representation corresponding to the states 
(8.10), i.e. 

9+=2,+ig2= -(xf+xg)a,  -2x,x2d2+2pxI+2qx2 

2- = ~2~ - i 2? = a ,  
G+ = G I + i G 2 =  - 2 x , ~ ~ a ~ - ~ x f + x ~ ) ~ , + 2 q x ~ + 2 p ~ ~  

d- = dl -id, = az 

9 0 = . 2 3 = x l a , + x , a z - p  

d,, = d3 = x,a, + x,a, - q 

(8.19) 

0 0  

with a ,  =a/ax,  and d ,  =a/ax,. Note that for the hydrogen atom bound states, the 
differential operators (8.18), where 9, = 2, = 0 and vu = 1, are still useful since they 
have the same action on the cs as the corresponding S0(4 ,2)  generators even if they 
do not form a representation of the latter. 
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Finally, the reduced matrix elements of the S0(4 ,2 )  non-compact generators can 
be calculated by the methods of 0 7 .  Let us consider, for instance, the case of an irrep 
~ ~ ( 0 0 ) .  From (A2.3), we obtain for the non-vanishing reduced matrix elements between 
normalised states 

(8.20) 

From such results, reduced matrix elements in the spherical basis (8.7) can be deter- 
mined by a recoupling technique. By rewriting DL,p+p, a,P = 1,2,  in the form 
D9,92 ,  q , ,  q2 = *$, as follows: 
D:, = D:/2,1/2 D:4 = D:/2.-1/2 DL = D11/2,1/2 D L =  D11/2,-1/2 (8.21) 

t 

and by defining 
DZ, = c (4% 9 fq21Kq)D;,q2 K = o ,  1 (8.22) 

9192 

we indeed get 

{ v + 1 (P‘o)ql DI, (I 4 p O ) O  = {. + 1(P’O)llDt II 4 P O ) I  
x ((fp, f)$p’, (ip, $)ip’, “, f P Y ,  ( t f ) K ,  1 ’ )  (8.23) 

where ( I ) is an SU(2) recoupling coefficient. At last, reduced matrix elements of Bt  
are obtained by noting that from (8.5), (8.21) and (8.22) 

Bi  = -do:, q = 1,0, -1 B: = -ifiDAo. (8.24) 
In the case of the hydrogen atom bound states (for which (PO) = ( v  - 1, 0) is omitted), 
the results are 

v +  I +  1)( v + 1+2)( I +  1) 
21+3 

{ v + 1, I + 111 Btll V I )  = - 

((v - I)(;--lI + 1)I l’* 1 { v +  1, I -  1 ((B+jj V I }  = (8.25) 

{ v +  1, I I / B ; I I  V I }  = -i[3(v - i ) ( v +  I +  111’’~ 
in agreement with other authors (see, e.g., Moshinsky and Seligman 1981). 

Appendix 1. Coherent states for the U(2 , l )  and U(2,2) irreducible representations 

The purpose of this appendix is to present complete and detailed results for the U(2, 1) 
and U(2,2) cs by particularising the general results of 0 4. 

A l . l .  U(2, I) coherent states 

The U(2, 1) irreps are labelled by [ k l k z ;  k ’ ] .  In  the case where k ,  = k 2 ,  we 
the results of 0 3 with p = 2, q = 1. We shall therefore restrict ourselves to 
where k, > k2 .  The c s  are then 

may use 
the case 

(Al . l )  
\ a  1 
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where U, = U , , ,  LY = 1,2,  and y is a complex variable varying in the whole complex 
plane and parametrising the U(2) cs 

IY) = exP(Y*E,2)lLws). (A1.2) 

The cs reproducing kernel is given by 

k(d ,  y ' ;  U * ,  y * )  = ( U ' ,  y'l U, y )  = (det U)-kl-k'-nSkl-kz (A1.3) 

where U is defined in (3.4) and 

s= U , , -  U 2 , y ' -  u , 2 y * +  U22y'y*. (Al .4)  

Provided that k ,  + k ' +  n > 2, the states /U ,  y )  satisfy the unity resolution relation 
(4.6), with the weight function 

] ( U ,  U * ,  y ,  y * )  = 7Y3( k ,  - k 2 +  l ) (k,  + k'+ n - l ) (k2+  k'+  n -2)  

(A1.5) 

The cs representation ofthe U(2, 1 )  generators is obtained from (4.8) after substitut- 

x ( det U )  k,+k '+n - 2 ~ - (  k, -4+2) 

where U and S are obtained from (3.4) and (A1.4) by setting Io = U, y' = y .  

ing the following operators for @,:), and @b",": 
@:?' = ya  + k2 + f n 

@(PI 12 - - Y ( k , - k , - Y d )  @g) = a  (A1.6) 

@\:) = k'+  f n  (A1.7) 

8:;' = -ya + k ,  + In 

where a = a/ay .  

A1.2. U(2, 2) coherent states 

The U(2,2)  irreps are labelled by [ k ,  k,; k', k ; ] .  Whenever k ,  = k2 and k', = k;, we may 
use the results of 0 3 with p = q = 2. There are three remaining cases to be considered: 
(i)  k ,  > k 2 ,  ki > k ; ,  (i i)  k ,  > k 2 ,  k {  = k;  = k' and (iii) k ,  = k2 = k, k { >  k; .  In case (i), 
the cs are defined by 

(A1.8) 

in terms of the four variables U,,, a, P = 1,2,  and the two variables y, z, varying in the 
whole complex plane and parametrising the U(2) x U(2) cs: 

I Y ,  2) = exp(y*&+ ~ * E , , ) I L w s ) .  (A1.9) 

To get the cs for cases (ii) and (iii), we only have to set z = 0 o ry  = 0 in (A1.8) and (A1.9). 

k(d, y' ,  z ';  U * ,  y*, z*) = ( U ' ,  y' ,  z'l U, y, z )  = (det U)-kl -k; -"Skl-~Tk;-k;  (A1.lO) 

The cs reproducing kernel is 

where S is given in (A1.4), while T is defined by 

T = VI I - V 1 2 ~ ' -  V~,Z* + V ~ ~ Z ' Z * .  ( A l . l l )  

The states [ U ,  y ,  z )  satisfy the unity resolution relation (4.6) with the weight function 

] ( U ,  U * ,  y ,  y* ,  z, z*)  = .rr-"(k, - k 2 +  l ) ( k i  - kh+ l ) (k ,  + k { + n  - l ) ( k , +  kS+ n -2)  

x ( k 2 +  k {  + n - 2)(k2+ k ; +  n -3)(det U)"SATTC" (A1.12) 
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provided the condition K > 0 is fulfilled. Here U, S and T are obtained from (3.41, 
(A1.4) and ( A l . l l )  by setting U ’ =  U ,  y ’ = y ,  z ’=  z, and the exponents a, K ,  A, p are 
given by 

a = 6  K = k ,+  k ;  + n - 2  A = - ( k ,  - k2+2)  

p = = ( k j - k ; + 2 )  if k ,  ’ k2 k ;  > k ;  

a = 5  K = k ,  + k ’ +  n -3  A = -( k ,  - k2+2) 

p = O  if k , >  k2 kf 1 -  - k’ 2 -  - k’ (A1.13) 

a=5  K = k +  k i + n  -3  A = O  

p = -( ki - k ;  + 2 )  if k, = k2 = k k ;  > k;. 

The cs representation of the U ( 2 , 2 )  generators is obtained from (4.8) after substitut- 
ing the operators (A1.6) for 5&”,! and the operators 

(A1.14) 

where 8 =a/az for @pi.. 

Appendix 2. Detailed results for the matrix elements of operators between 
discrete bases 

The purpose of this appendix is to present detailed formulae for the matrix elements 
of the unit operator and of the U ( p ,  9 )  generators between discrete bases in some 
special cases. The first three correspond to multiplicity-free states and the fourth to 
multiplicity-two ones. For the former, the states (2.9), with A, substituted for B,, 
coincide with the orthonormal bases (7.8). 

A2.1. The case of U(p, q) irreducible representations [k;  k y  
From (6.11), for the matrix elements of T we obtain the result 

t ( [ h l , [ h ’ ] ) =  fi [ ( h i + k + k ’ + n - p ) ! / ( k + k ’ + n - p ) ! ]  
@ = I  

(A2.1) 

where hb = h, - k = h‘ - k‘, p = 1, . . . , q and h,,, = . . . = h, = k. Hence, from (7.2), the 
normalisation coefficient A is given by 

A = [ (  P < P ’  fi ( h i - h ; , + P ’ - P ) ) (  @ = I  fi ( k + k ’ + n - p ) ! )  

x ( fi ( h i + q - P ) ! ( h i +  k +  k’+ n - p ) !  
,=I 

(A2.2) 
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The non-vanishing reduced matrix elements of D' are 

{ [ h ] [ h ' ] J I D t ( ( [ b ] [ h ' ] )  =((h,F+q - r)(h:+ k +  k '+ n - r )  

where h;, = hQ - S,,  and zk = hb - S,, for some r such that 1 S r S q. 

A2.2. The case of U(p,  1 )  irreducible representations 

The U(p, 1 )  irreps [ k ;  k ' ]  only contain multiplicity-free states since [ h ' ]  has only one 
row, whose length is determined by the relation h" = h ' -  k ' ,  and moreover the reduction 
of the product of U( p )  irreps [ k ]  x [h ' ]  into a sum of U( p )  irreps [ h ]  is multiplicity 
free. The matrix elements of T and the normalisation coefficient A are given by 

P 
t ( [ h ] ,  [ h ' ] )  = n [( ha + k'+ n - a ) ! / (  k'+ n - a ) ! ]  (A2.4) 

a = l  

and 

( k ' +  n - a ) ! / (  h, + k'+ n - a ) !  (A2.5) 

respectively. 
The non-vanishing reduced matrix elements of D' are 

P 
( h ,  + k'+ n - r +  1) n [( h, - k,  + a - r + l ) / ( h r  - h, + a - r + l)] 

0 = l  

(A2.6) 

where A' = h' - 1 and ia = h, - S,, for some r such that 1 s r s p .  

A2.3. The case of U(2,2) irreducible representations [klk2; k'l with k ,  > k2 

The U(2,2)  irreps [k,k,;  k ' ]  only contain multiplicity-free states since [ h ' ]  is determined 
by the relations h f  = h', - k' ,  h; = h i  - k' and the reduction of a product of U(2) irreps 
is multiplicity free. The matrix elements of T are still given by (A2.4) where p = 2, 
while the normalisation coefficient A is 

( h ;  - h i +  l ) ( k ' + n  - l ) ! ( k ' + n  - 2 ) !  '=( ( h l +  k ' + n  - l ) ! ( h 2 +  k '+n  -2 ) ! (h ; -  k'+ l ) ! ( h i -  k ' ) !  
(A2.7) 

The non-vanishing matrix elements of Dt correspond to & = h a  -Sa,, pb= 
hb - S,,, r, s = 1,2, and become 
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( h ,  + k ’ +  n - 1)(hi - k ‘ +  1)(h, -h;-k2+ k’+ I)(h;  - h 2 +  k2-k’) 
( h ,  - h,+ l ) (h i  - h i +  1) 

( h ,  + k ‘ +  n - 1)( h;  - k‘) (  h ,  - h ;  - k,  + k ’ ) ( h ,  - h ;  - k2 + k’+ 1) 
( h ,  - h,+ l)(h’,  - h i +  1) 

) 

) 

1 

if r = s = l  
I’2 

if r =  1, s = 2  
-( 
( h2 + k’+ n - 2)( h ;  - k’+ 1 )( h ,  - h ;  - k2 + k‘+ 1)( h2 - h;  - k2 + k ’ )  

( h ,  - h,+ l ) (h‘ , -  h i +  1) 

if r = 2 , s = 1  

I / *  

h2 + k‘+ n - 2)( h ;  - k’) (  hi - hi - k2 + k ‘ +  2)( h’, - h2 + k2 - k’+ 1) 
( h ,  -h ,+l)(h‘ ,  -hS+1) 

if r = s = 2 .  
(A2.8) 

A2.4. A multiplicity-two case corresponding to U(2,2) irreps [k,k,; k’, kl.1 with k ,  > k, 
and k ;  > k; 
If we consider polynomials of increasing degree in DL,p+p in (2.9), the first non- 
multiplicity-free case occurs for second-degree polynomials: for [ h,h2] = [ k ,  + 1, k2 + 11 
and [hihi]  = [ k :  + 1, k ; +  13, there are indeed two possibilities for the multiplicity label 
w corresponding to [h’] = [20] and [ll].  By solving the recursion relation (6.17) with 
the initial value 

~[OI,[O]([kl~21, [k:k;l) = 1 (A2.9) 

we successively obtain 

( A2.10) 

= - f [ ( k ,  - k , ) ( k ,  - k2+2)(kj - k;) (  k ;  - k ;  +2)]”2 
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Forinstance,for[k,k,; k’,ki]=[10; lO],[h,hJ=[h’,hi] =[21] and n =3,theoverlap 
matrix (7.1) and the normalisation coefficients A, are given by 

(A2.12) 

= 0.481 221[2O][21][21](h)(hf))+0.O41 951[11][21][21](h)(h’)) 
(A2.13) 

1[111[211[211(h)(h’)) 

= 0.48 1 95 1[20][ 2 1 I[ 2 11 ( h ) ( h ’)) + 0.3 13 43 )[ 1 1 ][ 2 1 I[ 2 1 I( h )( h ‘)). 

Some reduced matrix elements of Dt involving these states are 

([201[211[211 II 0” 1~1~201[201) = 0 

([ 11 1[21 IC211 I1 Dt It[ 1~1[2~1[201) = 3/42 

{[201[211[21]11 Dt11[10][20][20]} = 0.198 97 
{ [ 1 1][21][ 2 13 ( 1  Dt I( [ 10][20][20]} = 1.486 74. 

(A2.14) 
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